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This paper presents a study on the in#uence of the physical non-linearity of material in
creep conditions on vibration and stability of non-uniform annular plates subjected to
a follower force radially distributed at the outer edge. The stability analysis requires "rst the
calculation of a membrane stress distribution and then the application of the kinetic stability
criterion, making use of small superposed vibrations. The di!erential equations of the
membrane and vibration states have been integrated by means of the transfer matrix method
which allowed the determination of the relationships between the real and imaginary parts
of the complex frequency and compressive force (characteristic curves). The results have
been presented in numerous "gures. ( 2002 Academic Press
1. INTRODUCTION

Stability of elastic systems under non-conservative loading has already been studied for
over 60 years by a number of authors. One of the earliest among them was Beck [1] who
calculated the critical load in the case of tangential action of the force, i.e., when the
direction of the force is always tangential to the axis of the deformed column at its free end.
The literature devoted to the problems of analysis and synthesis of columns compressed by
follower forces with respect to its stability has been discussed by Gajewski and Z0 yczkowski
[2], Bogacz and Janiszewski [3], Langthjem and Sugiyama [4}6] and others.

Recently, Koiter [7] strongly criticized papers of that type and stated that &&The abundant
literature on such non-conservative follower forces in the second half of the present century
is devoid of any mechanism by means of which experiments on follower forces can be
performed.''However, to the author's knowledge, Yagn and Parshin [8] performed the "rst
experimental veri"cation of the loss of stability of a column compressed by the follower
force in 1967. The results of those experiments con"rmed Beck's [1] theoretical predictions
well. Beck's column was also realized experimentally by Sugiyama et al. [9]. Their
experiments also veri"ed the #utter instability. Experimental veri"cation of dynamic
stability of vertical cantilevered columns subjected to a follower force and self-weight of the
rocket motor is presented by Sugiyama et al. [10]. Recently, Langthjem et al. [11] during
the Fourth EUROMECH Solid Mechanics Conference, June 26}30, 2000, Metz, France,
presented a video recording of their interesting experiments concerning columns subjected
to rocket thrust and a pipeline conveying #uid. The results were also in good agreement
with theory. To recapitulate, one can be sure that the follower force is realistic, as Sugiyama
et al. [12] showed in a Letter to the Editor.

The present paper deals with the analysis of vibration and dynamic stability of an annular
plate with radially varying thickness subjected to a tangential follower force radially
0022-460X/02/030447#17 $35.00/0 ( 2002 Academic Press
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distributed at the outer edge. The plate is assumed to be in creep conditions. Similar
analysis problems for a linearly elastic annular plate were considered by Irie et al. [13],
whereas the optimization problem was presented by Gajewski and Cupia" [14]. Recently,
the in#uence of non-linear creep of material on vibrations and stability of a uniform column
compressed by the tangential force and on the optimal shape of the column were examined
by Gajewski [15, 16]. The problems of optimal design with respect to creep stability have
been formulated mostly by Z0 yczkowski [17] and his collaborators. Among them, the
problem of optimal design with respect to creep buckling for in-plane loaded circular plates
(but compressed by conservative forces) has been solved by WroH blewski [18] for the "rst
time.

In most cases of non-conservative stability problems, the kinetic criterion of stability has
to be applied. For this purpose, the small vibrations of an annular plate compressed by
a follower force superposed on the membrane state should be analyzed. If real parts of all
complex frequencies of vibration are negative, then the system is stable. If at least one of
them is positive the system is unstable. If, however, the corresponding imaginary part of the
frequency is not zero, then the vibrations pass from a decreasing amplitude to an increasing
one and the system loses its stability by #utter (see, e.g., reference [2]). By the application of
the transfer matrix method, the eigenvalues and the #utter loads of non-uniform annular
plate are calculated numerically.

2. CONSTITUTIVE EQUATIONS OF CREEP STABILITY

Following the state equation hypothesis of Davenport [19], adapted by WroH blewski
[18], it is assumed that the stress and strain components of a basic membrane stress state
are interrelated by the following creep law, accounting for strain hardening:
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Among various creep stability theories the Rabotnov}Shesterikov [20] strain-hardening

creep theory seems to be the most suitable here. Generally, it can be assumed that during
vibrations of a system (or as a result of buckling), the stress and strain components in the
basic membrane state are subject to small variations and a creep law (1) can be linearized
with respect to them. The behaviour of the variations determines the stability of the basic
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In order to describe kinetic instability, one superposes small variations of the stress and
strain state on the statical precritical membrane state. These variations satisfy the equation
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Assuming that the variations of stress and strain components are in the form of small linear
vibrations of complex frequency XM "dM #iuN :
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the tangent creep modulus, according to the Rabotnov}Shesterikov [20] theory, is equal
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Therefore, the tangent creep modulus is a complex value, whereas the secant creep modulus
EM
s
"pN

e
/e

e
, which can be evaluated from equation (1), is a real value.

By analogy with the paper by WroH blewski and Z0 yczkowski [21] our considerations are
con"ned to the strain-hardening creep physical law suggested by Rabotnov [22]
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where C, k, n are material constants dependent on temperature. In this paper, the values for
Cu 2003C are: n"32)8, k"9)52, E
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In the basic precritical state under the assumptions of constant stress pN "const(t) and

initial condition ec
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The &&tangent modulus'' for the non-linear creep law (6) can be written in the form
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It is a function of critical time tM H and of the complex frequency of vibration X1 . EM
0
is a certain

constant of stress dimension.

3. EQUATIONS OF THE MEMBRANE STATE

Consider an isotropic, non-uniform annular plate clamped at the inner edge and loaded
by a follower force at the outer edge presented in Figure 1. The plate thickness is assumed to
be circularly symmetric.

Hence, the in-plane membrane forces in the basic membrane state are uniformly
distributed and also circularly symmetric. Only two components of the internal forces,
namely, normal forces NM

r
, NM h are not zero. By using the law of similarity of stress and strain

deviators and assuming incompressibility of material, one can derive the dimensionless
non-linear boundary value problem of the precritical state as
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Figure 1. Non-uniform annular plate.
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The dimensional quantities are related to the non-dimensional variables and parameters by
the substitutions
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4. EQUATIONS OF THE VIBRATION STATE

The well-known equation of small vibration superimposed on the membrane state of
a plate may be written in the form
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where wN "wN (rN , h, tM ) is the de#ection of the plate and the increments of internal forces
(superposed on zero initial values) are expressed as
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are dependent on a critical time t* and on the complex frequency of vibration. In the elastic
case one has aJ "0.

Now, one introduces the dimensionless variables and parameters.
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Next, the functions of the independent variables are separated and by using the

substitutions suggested by Grinev and Filippov [24]
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Therefore, equation (12) can be transformed to the set of four ordinary di!erential equations
in non-dimensional form with complex coe$cients:
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To equations (18) one should add the boundary conditions. In the discussed case, the plate
is rigidly clamped at the inner edge and non-conservatively loaded by the uniformly
distributed force PM . Therefore, the boundary conditions can be written as:
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2
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2
)Pu(1)"0, (19)

where g denotes the tangency coe$cient.
The boundary value problems (10) and (18), (19) determine the so-called characteristic

curves, i.e., the relations between load parameter, P, and the real, d, and imaginary, u, parts
of the complex frequency of vibration, X. In the case of non-conservative loading, the
vibrations of the plate are stable if d(0 and they lose stability by #utter if a real part of
frequency changes its sign.

5. TRANSFER MATRIX METHOD

5.1. COMPLEX EQUATIONS

In order to obtain a solution of the boundary value problem (18), (19) one uses the
transfer matrix method (see e.g., reference [13]). At "rst, equations (18) and (19) are
rewritten in matrix form as
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and B is a matrix of coe$cients in equation (18). The values of the state variables at
arbitrary points x can be expressed by initial values at point x"b by means of a matrix S(x)
(the so-called transfer matrix)

X(x)"S(x)X(b), S(b)"1. (21)

Substituting equation (21) into equation (20) one obtains an initial problem which can be
easily solved by numerical integration:

S@"BS, S(b)"1, (22)
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while boundary conditions (20) lead to the homogeneous algebraic linear equations for
unknown boundary values X
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For the existence of a non-trivial solution of equation (23), the determinant of the coe$cient
matrix must be zero. Therefore, the complex equation
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determines the complex eigenvalue X as a function of tangency coe$cient and other
parameters of the problem. Moreover, from equation (23) one can calculate one of the
boundary values, X

3
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di!erential equations (20) are homogeneous and either value may be arbitrarily chosen. For
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5.2. REAL EQUATIONS

In order to simplify the calculations further one introduces new independent real
variables and real matrices
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Therefore, the determination of the transfer matrix elements T(x) allows for calculation of
state variables Y(x) (real) as well as state variables X(x) (complex), the real and imaginary
parts of frequency of vibration X. They generally depend on the compressive force P,
tangency coe$cient g, critical time qN , the number of circumferential waves m and other
parameters of the problem. In particular, one can determine the critical value of the
compressive force P which appears for d"0.

6. NUMERICAL CALCULATIONS, RESULTS AND DISCUSSION

The numerical analysis was performed for a cantilever plate loaded by a tangential force
(g"1) uniformly distributed along the outer edge as shown in Figure 1(b). In all
calculations, b was set to 0)2. The reference density oN

0
has been assumed to be equal to the

plate density oN and as a result o,1. Similarly e,1. The external damping has been
neglected i.e., c

0
"0.

The dimensionless plate thickness is normalized according to the constant volume
condition
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where <M is the volume of the plate, while the constant hM
0

equals hM
0
"3aN Ja for the chosen

value of slenderness parameter a. In all calculations, a"10~6. For a uniform plate the
thickness is constant h"2)083333.

All di!erential equations were solved by the Runge}Kutta}Gill fourth-order integration
method and the interval [b, 1] was subdivided into 50 nodal points; the accuracy was
checked by repeating the calculations with double the number of nodal points.

6.1. UNIFORM PLATE

Figures 2}4 present the typical behaviour of the characteristic curves corresponding to
four frequencies of vibration for very small values of the critical time qN"10~6 s and for
m"0. The in#uence of the rheological properties of material is very small here and the



Figure 2. Compressive force P versus the imaginary part of the frequency of vibration u for a"10~6,
qN"10~6 s and m"0.

Figure 3. Compressive force P versus the real part of frequencies, d, with a"10~6, qN"10~6 s and m"0, d;
#*#, d

1
; =*=, d

2
; d*d, d

3
and n*n, d

4
.
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Figure 4. The imaginary part versus the real part of frequencies, u, for a"10~6, qN"10~6 s and m"0, u:
#*#,, u

1
; =*=, u

2
; d*d, u

3
and n*n, u

4
.
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curves u!P are similar to those obtained by Gajewski and Cupia" [14] for elastic material.
However, even for very small qN , the curves d!P and d!u should be analyzed. As it is seen
in Figure 3(a), the "rst critical value of the compressive force P seems to be P

cr
+200 and

the second one is P
cr
+570. But one can see in Figure 3(b) (which is an enlargement of a part

of Figure 3(a)) that the real value of the frequency changes its sign for the "rst time at
P
cr
+114. Therefore, the destabilization e!ect appears, which is similar to that observed for

columns (see: e.g., references [6, 16]).
For larger values of critical time, the behaviour of the characteristic curves essentially

changes. In Figures 5}7, the curves obtained for qN"0.1 s and m"0 are presented. The
curves corresponding to the "rst and the second frequency of vibration separate. The
critical value of the compressive force equalsP

cr
+125 and it is reached only for the "rst

frequency of vibration. The vibrations connected with other frequecies are stable in the
range up to P"600.

Of course, the characteristic curves depend also on the number of circumferential waves
m. In Figure 8 the curves d!P corresponding to the "rst frequency of vibration calculated



Figure 5. Compressive force versus the imaginary part of frequencies, u, for a"10~6, qN"0)1 s and m"0, key
as for Figure 4.

Figure 6. Compressive force versus the real part of frequencies, d, for a"10~6, qN"0)1 s and m"0, key as for
Figure 3.
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Figure 7. The imaginary part versus the real part of frequencies.

458 A. GAJEWSKI
for qN"0)001, 0)1 s and for m"0}4 are presented. Finally, the curves u!P, corresponding
to the "rst and the second frequency of vibration, for qN"0)1, 10 s for m"0}4 have been
plotted in Figure 9.

6.2. NON-UNIFORM PLATE*PARAMETRICAL OPTIMIZATION

In this section, the transfer matrix method is applied to annular plates with the thickness
variation according to the power function

h(x)"h
1
[1!h

2
((x!b)/(1!b))s], (33)

where h
1

is calculated from formula (34), so as to satisfy the normalization condition (32):

h
1
"M1

2
(1!b2)!h

2
[(1!b)2/(s#2)#b(1!b)/(s#1)]N~1, sO1, sO!2, h

2
)1, (34)

leaving two parameters free, namely, s and h
2
.



Figure 8. Compressive force versus the real part of frequencies with various values of m for (a) qN"0)001 s and (b)
qN"0)1 s.
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The eigenvalues of vibration and the critical #utter loads have been calculated
numerically for s"1 (linearly changing thickness), 2 (parabolically changing thickness) and
also for s"3 and 4)5. In Figure 10 the corresponding shapes of non-uniform plates are
depicted. In all cases, the parameter h

2
changed from 0)2}0)9 (for h

2
"0 represents

a uniform plate), which allows one to determine the optimal value of h
2
. The calculations

were performed for qN"0)1 s, a"10~6.
For linearly (s"1) and parabolically (s"2) tapered plates the optimal values equal

h
2opt

"0)34 and h
2opt

"0)52, respectively. In both cases, the minimal critical
forces (P

cr
"131)9 and P

cr
"143)5) are connected with the "rst eigenvalues of vibration and

m"0 (see Figure 11). The critical forces obtained for m"1}4 are greater than the previous
ones.

As also shown in Figure 11, for s"3 one has quite di!erent phenomena. The lowest
critical force obtained for m"0 increases with increasing values of parameter h

2
and

reaches the value P
cr
"180)6 for h

2
"0)84. For greater values of h

2
, the critical force jumps



Figure 9. Compressive force versus the imaginary part of the "rst and second frequencies with various values of
m, for (a) qN"0)1 s and (b) qN"10 s.
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to level P
cr
"369)6 for h

2
"0)85. Simultaneously, the critical force obtained for m"4

rapidly decreases from P
cr
"201)6 for h

2
"0)83 to P

cr
"177)6 for h

2
"0)84 and

P
cr
"155)4 for h

2
"0)85.

Therefore, for s"3 and h
2
"0)839, the bimodal optimal solution has been obtained for

which the critical forces P
0
and P

4
are the same for m"0 and 4 as seen in Figure 12. Similar

phenomena have been observed for s"4)5, where for h
2
"0)847 one has P

0
"P

6
"218 for

m"0 and 6 as seen in Figure 13.

7. CONCLUSIONS

1. The characteristic curves for the annular plate compressed by a tangential force in
non-linear creep conditions have been analyzed for the "rst time.



Figure 10. Thickness of the non-uniform plates, key for s and h
2

values respectively: #*#, 1/0)34; =*=,
2/0)52; d*d, 3/0)839; n*n, 4)5/0)847 and £*£, h

2
"0.

Figure 11. Critical compressive force versus parameter h
2
, for a"10~6 and qN"0)1 s. Curve numbers refer to

s and m values respectively.
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2. The destabilization phenomenon due to a non-linear creep of material has been
observed. Although, as yet, the destabilizing e!ect of damping has not been veri"ed
experimentally (see e.g., reference [12]) this e!ect should be taken into account in
further considerations. As seen in Figure 8 the real parts d

1
reach high positive

values, which can lead to the loss of stability in a short time (not only after in"nite
time).

3. In a parametrical optimization procedure, the bimodal optimal solutions have been
obtained. For the &&bimodal optimal shape'', the critical forces are the same for various
values of circumferential waves.

4. The results presented in the paper are di!erent from those obtained for columns.



Figure 12. Bimodal critical force for s"3, h
2
"0)839, a"10~6 and qN"0)1 s. Curve labels indicate m values.

Figure 13. Bimodal critical force for s"4)5, h
2
"0)847, a"10~6 and qN"0)1 s. Curve labels indicate m values.
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